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Abstract 
We present  a  disturbance  rejection  mechanism for the for- 
mation flying of multiple  spacecraft based on  a  robust con- 
trol  approach  in  terms of an H ,  control  problem. The 
corresponding H ,  control  problem is then solved  numer- 
ically  using  linear matrix  inequalities. 

1 Introduction 
Formation  flying  (FF)  has  been  identified as an  enabling 
technology  for many of the NASA's 21St century  missions, 
among  them,  the Deep  Space 3 and  the  Terrestrial  Planet 
Finder.  Formation flying involves flying a  group of space- 
craft in a  particular  pattern while maintainingprecise  (but 
often  time  varying)  relative  position, velocity, attitude, 
and  angular  velocity,  with  respect to each  other [2], [SI. 
Since  traditional  spacecraft  control  is  often concerned with 
measuring  and  maintaining  the  same  quantities for a  sin- 
gle spacecraft  with  respect to  an inertial reference frame, 
the  analogous F F  control  and  estimation  problems  are of- 
ten  an  order of magnitude  more  challenging  than  those 
encountered  traditionally for a single  spacecraft.  In or- 
der to  make  the F F  control  problems at  least similar to 
the  single  spacecraft  case,  an  approach based on leader- 
following has been  proposed by Wang  and  Hadaegh [7] 
(also refer to [SI). The basic idea in leader-following (LF) 
is to designate  a  particular  frame (or multiple  frames) in 
the  FF as the reference frame(s)  and  measure  and con- 
trol  the  states of the  rest of the  formation  with respect to 
them. 

The present  paper  addresses  the  problem of designing  a 
control  law for the follower spacecraft in an  LF  formation 
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which is guaranteed to  attenuate  the effects of environ- 
mental  disturbances  on  the  performance of the  leader fol- 
lowing. The results of the  paper  are  in  direct relevance to 
those  reported [4] and [7] for  the  formation keeping  prob- 
lem.  Building  on  the  basic  feedback  linearization  scheme 
in [7], we propose  a control  mechanism  for  the  formation 
in  the presence of disturbance forces and  torques based on 
the H ,  methodology. The  linear  matrix  inequality (LMI) 
[l] formulation of the  corresponding H ,  problem is then 
used to design  a candidate  controller  which  is,  in  the H ,  
sense,  optimal. 

The organization of the  paper  is as follows. In $2 the 
assumptions which constitute  the  framework for the for- 
mation keeping  problem are  listed.  In $3 and $4 the basic 
facts  and  the  formulation of the  problem considered in the 
paper  are  presented,  followed  by the design  techniques 
which introduce  the H ,  formulation of the  disturbance 
rejection. A numerical  example  and  the  corresponding 
simulation result are  then  presented  in $5. 

First  a few words on  the  notation.  Formation flying con- 
sists of flying a  group of spacecraft in a particular  pattern. 
To be  able  to express the  time  evolution of the  formation 
and design the  corresponding  control  laws, it is convenient 
that a reference frame is attached  to  each  spacecraft. We 
shall always  assume that  these reference frames  are in- 
duced  from  a dextral  set of three  orthonormal  vectors. 
Let the  formation have n spacecraft  labeled as 1 , 2 ,  . . . , n. 
Let 3' denote  the reference frame  attached  to  the  i-th 
spacecraft; 3 I  on the  other  hand  shall  designate  the iner- 
tial reference frame. For the  inertia  and  the  mass of the 
i-th  spacecraft we use I' and mi , respectively. The force 
and  torque  acting  upon i are  denoted by f '  and ri ; for 
the mass normalized force we used ui := f '  The  time 
derivative  with respect to F' shall  be  denoted by &; like- 

wise, & will be used for the  time  derivative with  respect 
to 3 I  . rij denotes  the  position of the  origin of 3i with 
respect to 3 j  ; ri is the  position of the origin of 3' with 
respect to 3 I  . The desired  position of the origin of 3' 
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Figure 1: Formation  Coordinates 

with  respect t o  3 j  shall  be  denoted by ry , and by pid 
when j = I. The velocity of the origin of with respect 
to  3 j  , the velocity of the origin of 9 with  respect to  3 I  , 
the desired  velocity of the origin of with  respect to  3 j  
, and  the desired  velocity of the  origiqpf 9 with  respect 
to  3' , shall  be  denoted by VG , vi , vy  , and v i  , respec- 
tively.  Similar notation  is used for the  angular velocity of 
3' with  respect  to 3 j  : wG is the angular  velocity of 9 
with  respect to  3 j  and L$ is the desired angular velocity 
of 9 with respect to  3J (refer to  Figure 1). The cross 
product  matrix  induced by the vector 2 = [ X I  2 2  x3IT is 
the  matrix, 

0 -x3  x2  

- 2 2  2 1  0 
[ x ]  := 

2 Assumptions 
We consider a group of spacecraft which are  to  be kept 
in a particular  formation  pattern.  The  attitude  control 
of the spacecraft  in  particular is not considered  in the 
present  study. However, the  orientation of the spacecraft 
does  play a role in  the  formation keeping problem,  since 
the  angular velocity of the spacecraft effects the measure- 
ments of relative  distances  and velocities. The following 
assumptions  are  explicitly  made in the present paper: 

1. One  spacecraft is  designated as the leader  in the for- 
mation;  the rest are referred to  as the followers. 

2 .  The leader chooses its  control force (to acquire the 
desired position,  etc.)  independent of the followers' 
dynamics. 

3. The leader  communicates  its control  action to  the fol- 
lowers at  each instant of time. 

4. The followers can  measure, for example  via  the Au- 
tonomous  Formation  Flying sensor (AFF) [5], relative 
distance  and velocities to  the leader. 

5. The followers have knowledge of their own absolute 
positions, velocities, and  angular velocity, and  their 
attitude with  respect to  an  inertial  frame. 

6. A  commanded  differential  vector  with  respect to  the 
leader, expressed in the  inertial  frame, is supplied to 
the followers during a particular finite time  interval. 

7. Uncertainties,  in  terms of disturbance forces and 
torques  on  the follower spacecraft  are  present.  These 
disturbances  are  causes by solar  pressure,  gravity gra- 
dient,  aerodynamic, or magnetic forces. 

8. Uncertainties,  in the spacecraft  dynamics  model, as 
well as in the  communication  channel,  are considered 
to  be negligible. We shall  present  results  pertaining 
to  some of these  issues in  the subsequent  papers. 

Under  these  assumptions, the follower chooses its control 
force and  torque based on  the knowledge of its own dy- 
namics  and  the control that  was used by the leader to 
track a desired  trajectory. We note  that relaxing  some 
of these  assumptions  result  in a significant change in  the 
techniques which can  be used to  address  the  formation 
keeping  problem. 

3 First, Feedback  Linearization 
Under the  stated  assumptions  in $2, we consider the sce- 
nario where the leader's  position,  with  respect to  3 I  , 
evolves according to, 

The control force f 1  is chosen independent of the followers 
according to  some  mission  objectives, optimality  criteria, 
etc. 

Recall that  the first and second  derivatives of a vector 
A in F' and F' are  related by the following relation, 

d A  dA . 
dt dti 
" - - +w' X A ,  

where wi is the angular  velocity of F' with respect to F'. 
In  particular, 

dw' dw' . . dw' 
dt i 

" 

dt  dti 
- - +w' x w' = -, 

stating  that  the  rate of change of the  angular velocity is 
independent of the  frame of reference. 

Differentiating both sides of (3.1) with  respect to F' we 
obtain, 

d 2 A  d 2 A  du' 
dt2 dt! dti 

+ - X A + 2 ~ '  X - + W' X (w' X A ) . ( 3 . 2 )  d A  
dt i 

"- - 

Let, 



the  error is thus,  The  dynamics of the i-th spacecraft can thus be  expressed 

ei(t)  = ra(t) - r'(t) 
= r"(t) + h'(t), (3.3) 

where rli is the  vector  from  (the origin of) F' to  (the origin 
of) F' ,  i.e.,  the  position of the  leader  with  respect to  the 
i-th follower spacecraft  coordinates. We like to  obtain  an 
expression  which  describes  the  time  evolution of e' in F'. 
From (3.3) one  has, 

d2ei ( t )  - d2(r3')(t)  d2h'(t) 
" 

dt dt 2 +2; dt 
however, 

d2(r")(t) d2(.3(t) - r'(t)) 
dt 2 

- - 
dt  

= u y t )  - u'(t). (3.4) 

In view  of (3.2) we have, 

d2h'(t) = (u ' ( t )  - u'(t)) + - dt2 ' (3.6) 
where ui represents  the  total  normalized force acting on 
the  i-th  spacecraft,  i.e., 

u'(t) = uE(t) + ui( t ) .  

d2h'(t) + ( u l ( t )  - uE(t) - &t))  + - dt2 ' (3.10) 

The differential equations (3.9)-(3.11) describe  a  nonlin- 
ear  dynamical  system whose state represents the evolu- 
tion of the  position  error,  position  rate  error,  and  the an- 
gular velocity of the follower spacecraft,  in  the follower's 
coordinate  system.  In  general,  one would like to  choose 
the  control  action  such  that  the  error  terms  go  to  zero, 
while certain  optimality  conditions,  and  state  and  control 
constraints  are  satisfied.  Since  designing  non-conservative 
optimal  nonlinear  controllers  in  their  full  generality  is a 
formidable task, one  often  restores to less ambitious ob- 
jectives,  via for example  feedback  linearization. 

We notice that  the  parameters  available for the  control 
purposes  are  control force ui and  torque r:. However, the 
control  torque  might  be  independently used to  obtain a 
desired orientation  during  the  maneuver,  in which case, 
one  would  merely  focus on  obtaining  an  expression for ui. 

Suppose that  the  control force and  torque  are repre- 
sented as, 

The  last  term  on  the  right  hand  side of (3.6) can of course uE(t) = ui(t)  - u) l ( t ) ,  
be  represented  in F' as, T j ( t )  = ?(t)  + T j ( ( t ) ,  

d2h'(t) du'(t) dh'(t) 
dt 2 dt i dt i +- x h'(t) + 2w'(t) x - where, 

+w'(t) x (w'(t)  x h'(t)). (3.7) ujl(t)  := 223(t) X 22(t) -k Z g ( t )  X (23(t) X z l ( t ) )  
d2hi(t) 

dt  The  rate of change of the  angular velocity ui with  respect -u'(t) - - - 
to F' or F' is related to the  torque  applied  on  the space- 
craft  via  the  Euler's  equation, Tjl(t)  = 23(t) x I'z3(t). 

(P)-l+t) x Zl( t ) ,  

The  subscript 'fl' above is used to denote  the 'feedback dw'O = ( I i ) - ' (Ti( t )   -ui( t )  X ( l iwi( t ) ) ) -  (3.8) linearization'  term.  The  dynamics is thus simplified to, dt i 

Again  the  term ri represents  the  total  torque on the  i-th i l ( t )  = zz( t ) ,  
spacecraft,  i.e., i 2 ( t )  = -iiE(t) - u i ( t )  - (P)-%;(t)  x q ( t ) ,  

r ' ( t )  = T i ( t )  + T i ( t ) .  i 3 ( t )  = (l')-'(?:(t) + rj ( t ) ) .  

Now, (3.6) represents  how  the  error vector e' evolves in 
F'. We would like to  obtain  an expression for u:, such 
that  the origin is the globally  asymptotically  stable  limit 
point of the  trajectories defined by (3.6) in the presence of 
environmental  disturbances u\ and ri. For this  purpose 
we let, 

Let T = -(I ')- '[rj].  From  the  statistics of ?;, we con- 
struct  the  set 

f2 C Y?3x3 such  that T E R 

with  a  probability which can be  chosen to  be  arbitrary 
close to  one; now consider the convex hull of 0. For the 
purpose of the present  discussion we shall  assume  that 
the convex hull is a  polytope in Thus,  there  exists 
matrices T I ,  . . . , X ,  such that 

23(t) = w'( t ) .   TECo(T1,  . . . , x } ,  



where Co denotes  the  operation of taking  the convex hull 
of a  set. 

The  dynamics of the  leader following  can thus be rep- 
resented a s ,  

0 0 0  

Denote by, 

0 I O  

A , : =  [ T i  0 0 1 ,  i = 1  
0 0 0  

(3.12) 

(3.13) 

' , . . . , I ,  

The  dynamical  equations which  describe the evolution of 
the follower spacecraft  can  therefore  be  summarized as the 
following linear  differential inclusion [l], [3], 

i ( t )  = A z ( t )  + B, u + B, w ( t ) ,  (3.14) 

where, 

A E CO { A i , .  . . , A , } .  

The  output  equation  can generically  be  represented as, 

~ ( t )  = C, z ( t )  + D,, u(t) + D,,w(t). (3.15) 

In  the  subsequent  section, we shall  build  on  the  lineariza- 
tion  and  the  embedding  procedure described above to pr- 
pose  a state feedback  linear  controller for the  formation 
keeping problem which attenuates  the effects of the dis- 

turbance  vector [ 2 ] on the  state of the follower  space- 

craft. 

4 RMS Gain and State Feedback 
Synthesis 

We model  the  disturbance  vector w( t )  := [ 2;;; ] I  as a 

stationary  stochastic process having  a  finite RMS norm, 
defined to  be, 

Figure 2: The open  loop  block diagram for the follower 
spacecraft  (the  plant P represents  one of the Gi's). 

It is known that for an  ergodic wide-sense stationary 
stochastic  signal,  the RMS norm  can  be expressed in terms 
of the power spectral  density  function S(w),  

1 "  
I I ~ ( ~ ) I I R M S  = nace  ;z;; J_, sW(w> b. 

Now consider the follower spacecraft  dynamics  after  the 
feedback linearization, as represented  by (3.13) (Figure 2). 
For  each T, one as a  linear  time  invariant  system;  let  the 
corresponding  transfer matrix  be  denoted by Gi(s). The 
RMS gain of a transfer matrix Gi or its H ,  norm is the 
largest  ratio of the RMS norm of the noise  signal w to  the 
RMS norm of the  output  signal z ,  i.e., 

IlGi(s)lica := SUP I l 4 t ) l l ~ ~ s  
~ lw( t ) l lRMs#o  I l w ( t ) l l ~ ~ s  ' 

It can  also  be  shown that,  

IlGi(s)llm := su~gmax(Gi(jw)), 
W 

where amax(Gi(jw)) denotes  the  maximum  singular value 
of the  (complex)  matrix Gi(jw) [l]. 

We now focus  on proposing  a  state feedback  control  law 
which has as its  goal,  the  minimization of the RMS gain of 
the  resulting  family of closed  loop  feedback systems which 
represent  the follower spacecraft  dynamics. 

4.1 State Feedback Synthesis 
In  this  section we present a state feedback  control  which 
aims  to  minimize  the RMS gain of the  family of closed 
loop  systems which represent  the  dynamics of follower 
spacecraft. The follower dynamics  with  the controller in 
the feedback  loop  can thus be  represented as in Figure 
2, where It' is considered to be  a constant  state feedback 
gain. 

For simplicity of the  present  discussion, we shall  assume 
that D,, = 0, i.e., that  the noise  does not  directly affect 
the  output  signal z .  Let ~ ( t )  = K z ( t )  in (3.14)-(3.15); 
thus, 

i ( t )  = ( A  + B,li)z(t)  + B,w(t), 
A E C o ( A 1 , .  . . , A I } ,  

z ( t )  = (C* + &"l i )Z( t ) .  

In  order to minimized the RMS gain  from w to t ,  con- 
sider  the Lyapunov function V ( z , t )  = z ( t ) 'Pz( t ) ,  where 
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Figure 3: The block diagram for the follower spacecraft 
with  the  state feedback  controller (the  plant P represents 
one of the Gi ' s )  . 

the  matrix P is  positive  definite.  Suppose that P is cho- Figure 4: Simulation  results for a representative  scenario 
sen  such that  there  exists a nonnegative  number 7 satis- 
fying", 

d Thus, in order to find a controller  which aims to  minimize 
-v (z , t> + Z( t ) ' z ( t )  - 'Y2W(t) 'W(t)  5 0. ' (4.16) the RMS  gain of the  family of closed loop  systems r e p  dt 

resenting  the follower spacecraft  dynamics, we are led to 
Thereby, solve the following  semi-definite  program, 

l T  ?; 1 z(t ) ' z ( t )  d t  

since V ( z ( T ) )  2 0. Thus  one  can  deduce  that, 

i.e.,  one  can  bound  the  RMS  gain of the closed  loop sys- 
tem by A by an  appropriate  selection K which admits a 
quadratic  Lyapunov  function  with  the desired  properties. 

Expanding  the  condition (4.16) for the  family of transfer 
matrices G;'s ( i  = 1, . . . , I ) ,  one  obtains, 

( A z ( t )  + B, u( t )  + B, w(t)) 'Pz(t)  
+z( t ) 'P(Az( t )  + B, u( t )  + B,,, w( t ) )  

-(Cz ~ ( t )  + Dm u(t)  + Dtrnw(t))'(Cz z ( t )  
+DX, ~ ( t )  + D z w ~ ( t ) )  - y2w(t) 'w(t)  5 0, (4.17) 

for all A E Co { A I ,  . . .A,}  and  all z E ?R9. 

Y = K Q  (4.17) can  be  written a s ,  
After  some  simplifications,  and  setting Q := P - l ,  and 

( i  = 1 , .  . . , I ) ,  

where, 

miq,y,Q 7' 
Q >  0, 

AiQ + QA: + BUY + Y'B,' + B,B,' (CzQ + D z u y ) '  ] 
(CzQ + Dzu)Y -y2 I 

( i  = 1, . . . , I ) ,  

and  then let K = YQ-l. 

5 An Example 
In  this  section we provide an  example  and  the  correspond- 
ing  simulation  result for the  proposed  state feedback  syn- 
thesis  procedure  discussed  above.  For  this  purpose,  given 
the  matrices A I ,  . . . , A I ,  B,, and B,,, , as in (3.14), we chose 
the following matrices for the  simulation  purposes, 

C, = I and D,, = 0. 

The LMItool, an  optimization  package developed by  El 
Ghaoui,  Nikoukhah,  and  Delebercque  based on the  SP 
code of Boyd and  Vandenberghe,  implementing  the pri- 
mal/dual  interior  point  method for solving  semi-definite 
programs, was used to solve the  SDP (4.18)-(4.18). The 
disturbance force and  torque was modeled as a  band lim- 
ited  white noise. The  simulation  result is depicted in Fig- 
ure 3. 

6 Conclusion 
We proposed  a disturbance  rejection  mechanism for the 
formation keeping problem.  The  disturbance  rejection 
problem is first formulated in terms of  a family of H ,  
optimization  problems. We then  proceeded to solve  these 



H ,  problem  using  their LMI formulations  via  the recently 
proposed  interior  point methods. A numerical example 
was provided to  demonstrate  the usefulness of the pro- 
posed approach for formation flying in the presence of 
RMS  bounded  disturbance forces and torques. 
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